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Synopsis

Several internal parameters are studied for a 3D simple shear flow of soft polydispersed granular
materials consisting of viscoelastic spheres. These internal parameters include the contact time, the
multiple collision group size, and the coordination number. It is found that the contour plots of the
contact time and the coordination number in the plane defined by the concentration (solid fraction)
and dimensionless stiffness are similar. These contours are qualitatively the same as the regime
chart/flowmap proposed in earlier studies. The resulting constitutive relation shows different rate
dependency at different concentrations and shear rates. Based on a simple dimensional analysis
and a power law formulation, the rate dependency may be expressed by an index. The two extreme
values of this index, 0 and 1, correspond to solidlike and gaslike granular materials, respectively.
The contour map of this rate index (the power of the dimensionless shear rate in the constitutive
relation) resembles those of the A-shaped curve typical of a phase diagram for ordinary
materials. © 2008 The Society of Rheology. [DOI: 10.1122/1.2807441]

I. INTRODUCTION

Ordinary materials exhibit gas, liquid, and solid phases. Transitions between any two
phases are controlled by temperature and pressure. Phase transition is well-defined in
these thermodynamic equilibrium systems. For granular materials, phenomena analogous
to phase transitions have been observed in a variety of geometries, e.g., Couette flows
[Savage and Sayed (1984); Hanes and Inman (1985)], inclined flows [Zhang and Camp-
bell (1992); Orpe and Khakhar (2004)]; and channel flows [Hou et al. (2003)]. However,
lacking a rigorous thermodynamic description, the theoretical basis for transitional phe-
nomena in granular systems is still absent. Because of the dissipative nature, granular
materials belong to the category of strongly nonequilibrium systems [Jaeger e al.
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(1996)]. A major effort from the theoretical physics community is required to construct a
statistical mechanics basis for such systems [e.g., Edwards et al. (2005)].

Because of its dissipative nature, dynamic granular systems must have an energy
source from either external vibration or shear. Sheared granular systems are common-
place in many geophysical processes such as sediment transport over land or in a body of
water. The pioneer work of Bagnold (1954) described the transition from a “rapid shear”
regime to “macroviscous” regime. The stresses, both normal and shear, depend on the
square of the shear rate in a rapid shear regime and drops to the first power of shear rate
as in a normal Newtonian fluid in the macroviscous regime, when the interstitial fluid
becomes dominant. Bagnold’s work for the rapid shear flow was conceptually similar to
the kinetic theory of dense gases [Chapman and Cowling (1970)] later adopted to form
the kinetic theory of granular flows [Jenkins and Savage (1983)]. Thus the theory for
sheared granular materials has been firmly rooted in the fluid mechanics community
[Campbell (1990)].

If one takes granular shear flows to the extreme and considers very high solid con-
centrations encountered in soil mechanics, then it is not difficult to realize that stresses
developed inside a granular system can be independent of the shear rate as soil is known
to behave as a plastic solid. What controls the transition from a granular gas to a plastic
solid in a continuously sheared system? Could a statistical mechanics basis be developed
for such systems as well?

In this study, we present a 3D simulation of mildly polydispersed system of soft
particles under simple shear. We investigate a number of internal parameters that have
been associated with the change of constitutive behavior of sheared granular materials:
contact duration, multiple collision group size, and the coordination number. A dimen-
sionless form relating the stresses to the strain rate is given at the end. Using this form,
a rate dependency index is introduced to the stresses. The contour plot of this index in the
(solid concentration, strain rate)-space provides a regime chart that shows the evolution
of granular materials from solidlike to fluidlike phases.

Il. PREVIOUS STUDIES

Babic er al. (1990) utilized a discrete element simulation of a 2D system of a simple
shear flow of monodispersed viscoelastic disks to study the stresses and shear rate rela-
tion. It was found that the dimensionless stress T,-j*= 7ii/ pD?*%* depended on the dimen-

sionless shear rate B=y\m/K, in such a way that 7..=q; jB”U. The parameters a;; and b

4 1]°
associated with individual stress components, are b(])th functions of the solid concentrai-
tion and shear rate. In the above, 7; is the stress tensor, 7 is the shear rate, p is the particle
density, D its diameter, m its mass, and K,, its normal stiffness. A more extensive study of
this stress-strain rate dependency was later conducted using a 3D assembly of monodis-
persed spherical particles [Campbell (2002)]. Both the 2D and 3D analyses showed that
at very high concentrations the power b;; approached -2, implies that the dimensional
stress 7;; became independent of the shear rate, or the material approached a solidlike
state. At very low concentrations, these simulation results confirmed the non-Newtonian
behavior, where b;;=~0 and 7;~ 7. It was also found that not only the concentration
affected the rate dependency of the stress on the strain rate, but the strain rate itself could
also change the power b;; in such way that the higher the strain rate the lower the power
bij.

Based on the simulation observations, including the coordination number, collision
frequency and force chain formation patterns, a “regime chart” was speculated to classify

the different “regimes” of a granular shear flow. This regime chart is reproduced in Fig.
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FIG. 1. Flow classification Type A transition refers to multiple collisions, Type B transition refers to force chain
formations, and Quasistatic state refers to persistent force chains. The vertical axis B=j\m/K, is the dimen-
sionless shear rate and the horizontal axis is the solid concentration [schematic regime chart, reproduced from
Fig. 13 of Babic et al. (1990)].

1 [Fig. 13 of Babic er al. (1990)]. In this figure, “rapid flow” refers to a state where binary
collisions are responsible for all stress generation, “Type A” transition refers to multiple
collisions “Type B” transition refers to force chain formation, and “quasistaticstate” re-
fers to persistent force chains. In a phenomenological sense, one may associate the rapid
flow state with the gaseous phase, the transitional states (A and B) with the liquid phase,
and the quasistatic state with the solid phase. The internal processes such as multiple
collisions, force chain formation and its persistence, and the shape of the regime chart
were postulated without quantitative data.

The existence of such a regime chart was also discovered in a 3D study of monodis-
persed systems of soft spheres [Campbell (2002)]. A large amount of simulation data
from a simple shear flow produced a flowmap [Fig. 10 of Campbell (2002)] of the same
shape shown in Fig. 1. In addition, the stress generation mechanisms leading to such
transition were also investigated, resulting in different terminology and demarcation cri-
teria for the various phases (inertial-collisional, inertial-noncollisional, elastic-inertial,
and elastic-quasistatic). The contact duration was determined and compared with the
progression from gaslike to solidlike behaviors. It was found that the dependence of the
contact time on the concentration and shear rate closely resembled that of the dimension-
less stresses. Because of the differences in the demarcation criteria, the regimes shown in
Fig. 1 are only loosely associated with those in Campbell (2002), where the “rapid”
regime is split into inertial-collisional and inertial-noncollisional, Type A regime overlaps
the inertia-collisional and elastic-inertial, and Type B and quasistatic are combined into
elastic-quasistatic regime.

The parameters in a phase diagram such as Fig. 1 are solid concentration and the
dimensionless shear rate (or 1/dimensionless particle stiffness!’?). These parameters are
very different from the familiar thermodynamic parameters of temperature and pressure.
Yet the shape of the diagram is strikingly similar to the phase diagram of ordinary
materials. We thus ask the question “what are the internal parameters in a granular
material that can help us develop an equivalent thermodynamic phase transition theory?”

The contact duration and multiple collision group size were suggested as important
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internal parameters in Babic et al. (1990). This idea was investigated in Shen and San-
karan (2004) where the stress, shear rate, contact time duration, size of the multiple
collision groups, as well as the coordination number were studied for a 2D assembly of
soft monodispersed system. Their system was the same as in Babic et al. (1990) except
that 3000 particles were simulated instead of 30. All phenomena previously discovered
were reconfirmed. It was found that indeed the multiple collision size grew with concen-
tration and shear rate. Though not directly measured, when the group size grew to the size
of the system, force network must have percolated the whole system, leading to load
bearing capacity. Quantifications of the force network by measuring force chain length,
density, and their lifetime were not investigated due to the lack of mathematical defini-
tions for these parameters. In addition to the internal length and time scales, the coordi-
nation number was also studied. Interestingly, at high shear rates and any concentration,
the coordination number appeared to approach a value that corresponded to the coordi-
nation number for an isostatic (i.e., statically determinate) system of uniform disks [Ball
(1999)].

Recently a 3D discrete element simulation of identical spheres in a simple shear flow
was conducted to study the mean contact time and the coordination number in relation to
shear rate and solid concentration for a particular granular material with contact friction
coefficient of 0.5 and restitution coefficient of 0.7 [Ji and Shen (2006)]. It was found that
these two parameters, contact duration and coordination number, seemed to capture the
onset of transitional behavior. At a dimensionless mean contact time of ~2, where the
dimensionless contact time was defined as the contact time divided by the mean binary
contact time, a phase change between a dilute collisional flow and dense transitional flow
occurred. At coordination number of ~4 phase change between dense transitional flow
and quasistatic flow occurred.

To test the robustness of these critical behaviors for more general cases, in this study
a 3D simulation is again utilized. Monodispersed systems tend to organize into crystalline
structures that may play a role in the behavior of the granular assembly. In this study, we
examine a polydispersed system of spheres with a uniform size distribution of +10%
variation from the mean. We include a range of material properties with contact friction
©=0.0, 0.1, 0.5, and 1.0 and restitution ¢=0.1, 0.7, and 1.0.

lll. THE NUMERICAL MODEL

The numerical model follows that of Babic et al. (1990); Campbell (2002); and Shen
and Sankaran (2004). The contact force between two spherical particles is the sum of a

linear spring and a linear dashpot: Fy,;,,
particle overlap and 5 is the relative velocity of approach between two contacting par-
ticles. These two forces act in both the normal and the tangential directions of the contact.
A constant relation between the coefficients in the normal and tangential directions are
assumed: K,=akK,, n,=Bm,. In this study we choose a=1.0 and =0.0, as in the three
previous studies cited previously. The tangential force is limited by a friction slider such
that the maximum tangential contact force is w times the normal contact force.

The effective normal stiffness coefficient between two particles A and B, like or
unlike, is K, =k2k2/ (k2 +kP), where k' and k? are the stiffness coefficients of particles A
and B, respectively [Itasca (2003)]. The stiffness in this study is defined as k,=m DE/4,
where E is the material Young’s modulus and D is the particle diameter. (Note: This is the
source of the linear contact model. For elastic spheres the true contact stiffness is K,
=1/3EVD/(1-17)8"2, where v is the Poisson’s ratio [Hertz (1882)].) The normal damp-

ing coefficient is modeled as 7,={,\/(my+mp)K,, where the dimensionless damping ¢, is

=K& and Fyup0= 76, where 6 is the particle-
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FIG. 2. An example at solid concentration C=0.7. (a) Particles packing where darker shading indicates smaller
particles, and (b) shear velocity distribution where darker shading indicates slower particles.

defined by the restitution coefficient e as ¢,=-In e/ V7> +1In? e. The macrostresses consist
of the contact stress (1/ V)Echkfch- and the kinetic stress (—1/ V)Epmpulfpu]'-p. The sum-
mation for the contact stress is over all contact points in the simulation volume and the
summation for the kinetic stress is over all particles in the simulation volume. The total
stress considered in this study is the sum of these two.

To simulate a simple shear flow we follow the standard techniques developed for
nonequilibrium molecular dynamics [Allen and Tildesley (1988)]. The computational
domain is first filled with a given number of particles. The velocity V is in the x-direction,
with a constant gradient in the y-direction. When one particle moves out from any
direction of the computational domain, it re-enters from the opposite direction in the
manner explained in Babic et al. (1990). In this way, the total granular mass is conserved.
To obtain a random packing of polydispersed granular materials at any concentration, a
face-centered cubic lattice using the maximum particle size to define the lattice points is
adopted. After placing the particles, the domain is expanded or compressed to the desired
volume according to the prescribed concentration. During the compression period, the
particles rearrange themselves to form a random packing. For low concentrations, expan-
sion of the domain would leave particles in the center portion. Particles in the center
portion disperse to fill the domain after shearing starts. All data are obtained after the
shearing motion has reached a steady state, as detected by the time series of the stresses.

If the sample size is too small, the boundaries will affect the results. However, the
computational cost of increasing the sample size increases rapidly. For a simple shear
flow of uniform particles the sample size should be at least 7 X7 X7 [Campbell (2002)].
For nonuniform granular materials, boundary effect reduces due to the enhanced disorder
from random distributions of particle size and location. In this study, the domain size is

chosen to be a X bXc¢=(10X 10X 10)5, where D is the mean particle diameter. In this
way, each case has at least 9 X9 X9 particles. The steady-state distributions of particle
size and velocity in the x-direction for a typical case are shown in Fig. 2. The grayness
level in Figs. 2(a) and 2(b) indicates the particle size and velocity, respectively. Shear
bands which occurred in monodispersed systems [Babic er al. (1990)] are not observed in
this study.
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FIG. 3. Effective friction coefficient u,=7,,/ 7y, vs dimensionless shear rates and concentrations.

IV. DETERMINATION OF GLOBAL BEHAVIOR

A range of concentration, shear rates, and particle properties including the stiffness,
restitution, and friction, are investigated. In this section we present some global proper-
ties of the granular assembly, including the stresses and the effective friction defined as
Me=Tyy/ Ty,. First, effective friction is presented in Fig. 3. Both Figs. 3(a) and 3(b) use the
same data but are plotted in different ways. Figure 3(a) is more conventional, where the

effective friction is plotted against the dimensionless stiffness K::I?n*/ p53)'/2, where I?n
is the mean stiffness of the nonuniform particles. The parameter K, is related to the
dimensionless shear rate B through K:=7T/6Bz.

From Fig. 3(a), at high C(incentrations (C>0.58) the effective friction approaches a
constant at large values of K, similar to ordinary frictional solids. However, by investi-
gating the frictional behavior alone it is difficult to determirzke the state of the granular
materials because constant friction is also observed at high K, for concentrations as low
as 0.4 where stresses are mainly generated by collisions. Figure 3(b) shows an interesting
phenomenon. The friction curves for constant K, intersect. Although the underlying
mechanisms are not clear at this point, intersecting curves usually imply that some con-
trolling parameters are at their critical values at tile intersection. All curves do not inter-
sect at the same point. For smaller values of K, the value of C at the intersection is
lower.

The stresses themselves are shown in Fig. 4. Unlike the conventional way of present-
ing the stresses as functions of the shear rate, here the stresses are plotted against the
solid concentration. Following Campbell (2002), two different dimensionless forms for

the stresses are shown. In semilog plots, the first, defined as 7'1-’i=7'l-j5/ I?,,, is strongly
sensitive to the shear rate at low concentrations, as shown in Fig. 4(a), and the second,

defined as 7',7*: i/ pﬁzj/z is strongly sensitive to the shear rate at high concentrations, as
shown in Fig. 4(b). In Fig. 4, ©=0.5 and ¢=0.7, and only 7, is presented. Other stress
components behave similarly.

Plotted in this way, it is clear that two distinct mechanisms are at play at different
concentrations. From Fig. 4(a), when C>0.65 the curves of 7, = 7..D/K, from all shear
rates collapse to one. Hence, the granular materials become an elastic solid. From Fig.

4(b), when C<0.4, the curves of T;=nj/ p5272 collapse to one; hence, the granular
materials behave as a kinetic gas where 7;; %*. Somewhere between these two concen-
trations, phase change must take place. The range of concentration for this transition is
expected to depend on the particle’s material properties. The same conclusion has been
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FIG. 4. The relationship between dimensionless stress and shear rate with different concentrations. In (b) the
analytic solution from kinetic theory is also included for comparison, in which parameter B is a complex
combination of e, u, and the ratio of tangent to normal velocity at each contact. An average value is used to
derive the analytic solution [Lun (1991)]. The choice of B=—0.75 corresponds to u=0.5, ¢=0.7 and the velocity
ratio is 1.

arrived at using the conventional way to plot the dimensionless stresses against the shear
rate (as was done for 7; ; versus 1/ B? [Campbell (2002)] or for 7, versus B [Babic et al.

(1990); Campbell (2002)].

V. INTERNAL PARAMETERS

Phase transition of granular materials is associated with how forces are transmitted
within the assembly. Thus, this transition should depend on the material properties at the
particle level. It is desirable to determine if there exists a universal parameter(s) that
control(s) the transition for all granular materials. In a granular flow, the contact time, the
multiple collision group size, the coordination number, and force chains all change sig-
nificantly during phase transition. Investigating these internal parameters should be the
first step toward a quantitative theory for phase transition in a granular material.

The contact time is the most direct measure to distinguish the contact types, which are
binary, multiple, or persistent [Zhang and Rauenzahn (1997, 2000); Potapov and Camp-

bell (1996)]. A contact time number may be defined as m=T,/ Tbc, in which T, and Tbc

=mD/\3E(1 —{i)/ 2p are the mean contact duration and the binary contact time between
mean size particles, respectively. When multiple contacts occur, except, very rarely, under
high shear rates a third particle may knock a binary collision pair out of contact prema-
turely, the contact time in general is longer than that in a binary collision, resulting in
m>1.

Subtracting the binary contact time from the mean contact time, the net contact time
number, defined as m'=m—1 is plotted in Fig. 5. Binary collisions corresponds to m’
=0. Figure 5 is for the case u=0.5,e=0.7. The other cases are qualitatively the same.
These results are close to the monodispersed case [Fig. 4 of Ji and Shen (2006)]. The
appearances of these curves are very similar to those in Fig. 3. That is, relative to K the
curves diverge and relative to C the curves cross. None of the conditions shown corre-
spond to the binary colllslon case. From Fig. 5(a), for low concentration and low shear
rate (large values of K|, ) the contact duratlon does approach that of the binary collision.
At high shear rates (low values of K, ) even for very low concentration binary collision
no longer dominates. From Fig. 5(b), the net contact time number increases with concen-
tration but the increasing rates and amplitudes are very different for different shear rates.
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FIG. 5. Contact time number vs (a) dimensionless stiffness and (b) concentration.

These curves intersect within a range of C. If we separate the curves in Fig. 5(b) accord-
ing to *IOW and high values of K s shown in Fig. 6, it is seen that the intersections for
low K, are diffused but for high K, all three curves seem to pass through one point where
m' = 1O at C=0.586. It is unclear why the nature of these curves should change sharply
at certain values of K The nature of these intersects also depends on the material
properties, as shown in Figs. 7(a) and 7(b) for ©=0.5,¢=0.1 and u=1.0,¢=0.7, respec-
tively. More dissipative systems with higher values of friction or lower values of resti-
tution have more diffuse intersections. The case shown in Fig. 7(a) has intersection
“point” at m' =30 and C=0.585. The case shown in Fig. 7(b) is too diffuse to define a
single intersection.

To verify that larger values of m’ do indeed correspond to multiple collisions leading
to load bearing force networks, we examine the spatial characteristics inside a granular
material. A “group” defined as the totality of particles connected by a force network was
examined in an earlier study to measure the number of simultaneously contacting par-
ticles at a given instant [Shen and Sankaran (2004)]. Adopting the same definition, Fig. 8
summarizes the ratio of the maximum group size to the total particle number for the
present cases. When this ratio becomes 1, the size of the force networks must span the
whole domain. Interestingly, even for concentrations as low as C=0.4, the max1mum
grgup size reaches nearly 90% of the sample size for very low values of K (such as

K,=1). But since the corresponding contact time was only 36% above the blnary colli-
sion time in this case (Fig. 5), these large force networks are short-lived. This same
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FIG. 6. Intersections of different contact duration curves for (a) low dimensionless stiffness and (b) high
dimensionless stiffness.
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FIG. 7. Intersections of different contact duration curves for different material properties: (a) low restitution
and (b) high friction.

observation was made in Campbell (2002). For C > 0.6, the maximum group size equals
the sample size. Load bearing force networks are present at least part of the time. Unlike
the curves of w, or m’, these curves do not intersect.

Using pure kinematic constraints, it can be shown that for an isostatic system of
monodispersed frictional spheres, the coordination number should be 4 and the corre-
sponding value for disks is 3 [Ball (1999); Ball and Blumenfeld (2002)]. Below this
number the assembly is unstable under load and thus should behave as a fluid. For a
system of monodispersed disks under simple shear the coordination number was found to
approach 3 at high shear rates for 0.8 <<C<0.9 [Shen and Sankaran (2004)]. Since the
critical coordination number was derived from a static equilibrium argument, it is intrigu-
ing that the same value can be reached under extremely dynamic conditions. The result of
coordination number n for the present study is shown in Fig. 9 for ©=0.5,e=0.7. All
other cases are s1m1lar Again, the curves are qualitatively the same as in Figs. 3 and 5:
curves relative to K diverge and relative to C cross.

The crossover pomt for the n curves is much more sharply defined than the u, curves
in Fig. 3, and the m’ curves in Fig. 5. The 1nt$rsect1ng curves are plotted again in Fig. 10
separating the low K cases from the high K cases, as in Fig. 6. Very interestingly, it is
found that under more dynamic cases (low K, values), the intersections focus at n=4, but
for less dynamic cases the curves converge at n=35 and remain collapsed past this point.
It should be pointed out that here the definition of coordination number is 2 Xnumber of
contact/number of particles. In Ball and Blumenfeld (2002), particles with one contact or
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FIG. 8. Particle group size vs shear rates and concentrations.



96 S. JIAND H. H. SHEN

7 7
©C=040 , o o o og [ © Kn*=1.0El X (b
6 [mC=045 - e o & o 6 [ ®Kn*=1.0E2 * m
LA C=0.50 . s o o A Kn*=1.0E3 g 4
sfxc=0528 & o ° L g s [ XKr=10E4 Am 9
XC=054 ¢ O ., A [ X Kn*=1.0E5 2: 4
eCc=056 2 % L. Ak : S
4f+Cc=058 ¢ o + E + Kn*=1.0E7 x§
= lacwos0 ¥ x * = I a
3 foc=062 & Z x . G 3 2 A X e
®C=065 ® = 4 < +
2[0C=070 © o, x ¢ 2 F m A XX
X
b < . >A( % * i | A - x *
o o x x * I A gxet
d B . S 8 X % 0 L% § st +
1.08-01 1.0E+01 1.0E+03 1OE+05  1.0B+07 0.35 0.45 0.55 0.65 0.75
K.* é

FIG. 9. Coordination number versus (a) shear rates and (b) concentrations.

no contact were excluded from the averaging, as defined in Thornton (2000). As the solid
concentration decreases, the differences between these two definitions may be important.

We investigate the effects of restitution and friction in Fig. 11. Restitution does not
change the previously mentioned observations for* the coordination number, but friction
does. At higher friction, the intersection of high K, curves are moved to higher values of
n. But the more dynamic cases still seem to maintain the n=4 intersection. The signifi-
cance of this apparently robust parameter is unknown. As discussed in Campbell (2002),
friction helps to sustain force chains and thus it is expected that coordination number
increases with increasing friction.

A more concise way to represent the coordination number is by plgtting its contours
with respect to the concentration C and the dimensionless stiffness K, . These plots are
shown in Fig. 12 for the cases ©=0.0, 0.1, 0.5, 1.0 and ¢=0.1, 0.7, 1.0. If there exists a
real critical value of the coordination number, then one of the contours must be a straight
vertical line. Along this line the coordination number is a constant with respect to the
shear rate or particle stiffness. The corresponding concentration is thus the critical con-
centration, below which we may call the system a quasifluid and above which a qua-
sisolid. The prefix “quasi” emphasizes the fact that some rate dependency remains no
matter how “solidlike” and some load bearing force chains may instantaneously exist no
matter how “fluidlike” the granular assembly is. In each case shown in Fig. 12, one
contour closely approaches vertical for a broad range of K, =10% indicating no rate
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FIG. 10. Details of the intersecting curves of the coordination number (a) low dimensionless stiffness and (b)
high dimensionless stiffness.
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FIG. 11. Details of the intersecting curves of the coordination number (a) and (b) low restitution and (c) and (d)
high friction.

dependency at the corresponding concentration. At either side of this concentration, a
qualitative change of the constitutive relation is expected. The contour value for the curve
closest to vertical varies between 4 and 5 for the cases studied.

VI. CONSTITUTIVE RELATIONS

To investigate how constitutive relations change corresponding to the previous internal
parameters, we express the stress components as follows [Babic er al. (1990); Campbell
(2002)];

ﬁizfij(’i’,c,D,P’Kmﬂ’e)- (1)

For the polydispersed granular materials, the mean particle diameter D and mean stiffness
K, replace D and K,, in Eq. (1). Using the dimensionless stress T:-;= 7,;/ pD*% and dimen-
sionless stiffness K, =K,/pD372, Eq. (1) can be written as

1= filK,,C.p.e). (2)

From the observed stress and shear rate relation a simple power law is suggested as

T;k]: aij(K:)bij, (3)

where a;;=a;{(C,u,e) and b;;=b;i(C,u,e). The parameters, a;; and b;;, are associated

with respective individual stress components. As will be shown next, both a;; and b;; vary
slowly with K: Substituting 7';;= T,-j/plsz'jzz and K::I?n/p53j/2 into Eq. (3), we obtain the
constitutive equation of granular materials as
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FIG. 12. Contours of coordination number. In all cases the contours begin with the value of 0.5 from the left
at intervals of 0.5.

7';,=aijlzb;,ij(P72)l_bij52_3bij or Tij=aijlz,i_cij(P}"z)Cij53Cij_l~ (4)

When b;; approaches 1, the stress is rate independent and when b;; approaches O the
stresses agree with the kinetic theory. A rate dependency index 0 <<c;;=1-b;;<1 is thus
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defined. The higher the value of ¢;; the more kinetic gas-like the stress is. Figure 13
shows the contours of ¢;; for the cases studied.

Figure 13 is directly related to the rate dependency of the granular materials and thus
represents the most important measure of the different phases; the higher the index c;;, the
more fluidlike the granular material. From these contours it is clear that some rate de-
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pendency exists for most cases studied. Contact friction and restitution do not seem to
impact these contours significantly, except for low values of friction.

VIl. DISCUSSION

Two of the internal parameters studied, contact time number and coordination number,
demonstrate the same behavior. That is, when plotted against the dimensionless stiffness
(or 1/dimensionless shear rate’), they diverge, and when plotted against concentration
they cross. The same phenomenon is present in the effective friction w, (Fig. 3). Crossing
of a family of curves implies the existence of some critical value corresponding to a
change of material behavior. The possibility of critical values is investigated in terms of
the contact time and the coordination number.

The contour plots of the coordination number are similar to the regime chart in Babic
et al. (1990) and the flowmap in Campbell (2002), although in these two earlier studies
no specific quantity was used to define the boundaries between different types of granular
shear flows. What we have found in this study is that not only the coordination number
follows the type of phase change-like behavior, but the contact duration also follows the
exact same trend (with similar contours). Some bulk properties, such as the effective
friction, behave the same as well. The rate dependency index c;; is the most important
parameter that describes the constitutive properties of a granular material. When it ap-
proaches 1, the material follows the same constitutive relation as a kinetic gas. When it
approaches 0, the material is a frictional solid. The contour plots of ¢;; are qualitatively
the same as those of the contact duration, the coordination number, and the bulk friction.
(Of the three, only those of the coordination number are shown.) When we compare Fig.
12(c) and Fig. 13(c) in the region where c,,=0, indicating a solid behavior, the coordi-
nation number varies between 5 and 6.5. This shows that coordination number alone does
not capture the phase change behavior. The same can be said for other internal param-
eters.

From Fig. 13 a family of A-shaped curves exists that describes the transition from a
dilute flow where stresses are generated by particle inertia (a gaslike phase), to multiple
collisions and occasional force chain formation (a liquidlike phase), to finally persistent
force chain formation with load bearing capability and negligible rate dependence (a
solidlike phase). Unlike ordinary materials with well defined boundaries between differ-
ent phases, this family of A-shaped curves is diffuse with many contours between solid-
like and fluidlike regimes. The “phase change” in granular materials is not through
discontinuous change of any parameters, at least in terms of those currently considered.

We began our study by asking whether there exist internal parameters that can help us
develop an equivalent thermodynamic phase transition theory for a granular material.
After examining three internal parameters of contact time, multiple collision group size,
and the coordination number, we find that a “quasiphase transition” does exist, but its
relation with thermodynamic type of parameters is not yet developed. The current pa-
rameters for constitutive relations in a granular material, C and K:, are from simple
dimensional analysis. While one may argue that pressure and granular temperature are
direct manifestations of C and K|, the relation between the stress and shear rate has not
been expressed in terms of those more familiar thermodynamic variables.

Even in the absence of a clear phase diagram, the contours of c;; provide a relatively
complete picture of how granular materials change their constitutive behavior.

The result concerning coordination number is the most interesting of all. Of all the
internal parameters studied here, coordination number has the most distinct critical be-
havior, although not a unique point, when plotted against C (Fig. 12). The contour plots
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are also the closest to the contours of ¢;;. The fact that the critical values of the coordi-
nation number seem to approach the value predicted from isostatic granular materials
(and of uniform particle size) is intriguing. For different values of contact friction and
restitution, the critical coordination number is not a constant but varies between 4 and 5
in the currently studied systems.

It is worthwhile commenting on the limiting case when c;;— 0. From Eq. (4) this

would lead to 7',<j—>a,-j1?,15‘1 and thus appears to be singular as D™'—0. In fact, to

facilitate a linear spring contact model, the spring constant is related to the particle’s
Young’s modulus I?nZEﬁ. Hence, in the limiting case, Eq. (4) reduces to 7;;~a;E and
is bounded.

Throughout the discussion in this work, the significance of one important internal
parameter, namely the force chain, has been frequently implied. However, despite abun-
dant reports on the observations of force chains in a shearing granular material, both
experimentally or via computer simulations [De Josselin de Jong and Verruijt (1969);
Cundall and Strack (1979); Oda er al. (1980); Behringer et al. (1999)], an attempt to
rigorously define them and to relate them to mechanical properties of the granular as-
sembly is very recent [e.g., Goldenberg and Goldhirsch (2002)]. A quantitative descrip-
tion of force chain dynamics has yet to be developed. Some initial attempts to mathemati-
cally define a force chain have begun [Peters et al. (2005); Muthuswamy and Tordesillas
(2006)]. On the other hand, the contact time and its dynamics have been described in
statistical mechanics terms [Zhang and Rauenzahn (1997, 2000)].

Finally, all data produced in this study are from a viscoelastic contact law with a single
friction coefficient. Other contact laws can also model dissipative granular systems. In
particular, elastoplastic contacts has also been adopted to fit a given restitution coefficient
[Thornton (1997)]. However, unlike the viscoelastic particles, for elastoplastic contacts
the contact duration decreases when the restitution decreases. Consequently, when com-
paring results between different dissipative systems, it is important to know the exact
nature of the dissipation. Likewise, if both static and dynamic frictions are included in the
model, complex stick-slip conditions can result at the microlevel. In depth study of the
effect of contact mechanics on the transition of granular materials is desirable.

Viil. CONCLUSIONS

We used a 3D simulation of soft polydispersed spheres to study the transitional be-
havior of a simple shear granular material. Previously we found that for a simple shear
ﬂovyk of monodispersed system, the contact time and the coordination number in a C
—K, space produced contours similar to the regime chart/flowmap proposed from phe-
nomenological considerations in earlier studies. In this study, we examined polydispersed
systems and a range of material properties. It has been confirmed that the contact time
and the coordination number both behave similarly with respect to the solid concentration
and the shear rate. A relatively sharp transition between solidlike and gaslike phases
exists for low shear rates, when concentration varies from high to low. At high shear
rates, a more gradual transition exists between solidlike and gaslike phases when con-
centration reduces. The fluidlike state is broadly defined in such way that the stresses are
dependent on the shear rate, including the extreme case when kinetic theory applies and
the granular material is in the kinetic gas phase.

Realization of dimensionless shear rates as high as required to experience a broad
range of rate dependency via varying concentration requires soft materials. For most
geological materials on earth, the dimensionless shear rate lies in the top part of the
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contour map shown in Figs. 12 and 13. Thus transitions from a quasistatic solid phase to
that of the kinetic gas phase are relatively sharp as discovered by other researchers
[Aharonov and Sparks (1999); Campbell (2002)].

A power law constitutive model is developed in which 7,;=a;;K, i(p7?)“iD~". The
contours of the rate index c;; are similar to those of the coordination number. These
regime maps are not phase diagrams of the normal thermodynamic type because the
variables used are not the ordinary thermodynamic quantities.

It is clear that there is a lot more to be studied concerning the transition of granular
materials. What we have found that has further complicated the matter is that the contour
map of the rate index differs for different stress components. What this means for defi-
nitions of phase change remains to be seen. Nonetheless, this study shows how several
internal parameters behave very similarly during transition. It is hopeful that by studying
these parameters and their relations, a theoretical basis may be constructed for the tran-
sition process in granular materials.
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